Trustworthy Al Systems

-- Generative Modeling (Part |)

Instructor: Guangjing Wang

guangjingwang@usf.edu

mailto:guangjingwang@usf.edu

Group Member Checkpoint

* For the course projects, two to three students will form a group,
choose an Al application topic/task, and complete both midterm
and final projects.

* The deadline is Jan. 27", 11:59 pm

* |f you cannot find your teammates, we will help randomly assign a
group, but you will get 0 grade for this checkpoint.

1/28/2025 CIS6930 Trustworthy Al Systems

Project Examples from Last Semester

* Research-oriented
* Voice conversion and reversing the converted voice

* Machine unlearning
* Enhancing low-light image processing with Retinex-based algorithm

* Engineering-oriented
 Attendance Record Based on Face Identification
* LLM Agent for Food Classification
 Al-assisted symptom analysis for healthcare diagnostics
 Signature forgery detection using deep learning models

1/28/2025 CIS6930 Trustworthy Al Systems

Last Lecture

* Semantic Segmentation

* Object Detection
* R-CNN series
* YOLO series

1/28/2025 CIS6930 Trustworthy Al Systems

This Lecture

* Generative Modeling

* Generative Adversarial Network (GAN)
« DCGAN
* Conditional GAN
* CycleGAN

* Neural Style Transfer

1/28/2025 CIS6930 Trustworthy Al Systems

Generative Modeling

Given training data, generate new samples from same distribution

;4 learning samplingJ
’:> pmndel |:>, 4

Training data ~ py.:4(X |

Objectives:
1. Learn pyodel(X) that approximates pyais(x)
2. Sampling new x from pmodel(X)

1/28/2025 CIS6930 Trustworthy Al Systems

L earn Data Distributions

* Minimizing certain divergence metrics between the
training data distribution, and the distribution that the

model learns.

* Training models that maximize the expected log likelihood
of pe(x)
If | sample from the distribution and get a

* high likelihood = likely the sample came from the training distribution

* low likelihood = the sample probably did not come from the training
distribution

1/28/2025 CIS6930 Trustworthy Al Systems

Why Generative Modeling?

* Realistic samples for artwork, super-resolution, colorization, etc.
 Learn useful features for downstream tasks such as classification.

* Getting insights from high-dimensional data (physics, medical
imaging, etc.)

* Modeling physical world for simulation and planning (robotics and
reinforcement learning applications)

* Many more ...

1/28/2025 CIS6930 Trustworthy Al Systems

Overview of different types of generative models

GAN: Adversarial / _|Discriminator Generator 1
. . X X A X
training D(x) G(z)
VAE: maximize - Encoder 7 Decoder A x!
variational lower bound q¢(z|x) po(x|2)
Flow-based models: x Flow -z . Inllfrse . x/
Invertible transform of f(x) f (=)
distributions
Diffusion models:_ X0 . X1 - Xo L z
Gradually add Gaussian - - - - - - - — - - RRERRE --------
noise and then reverse

Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

1/28/2025 CIS6930 Trustworthy Al Systems

Generative Adversarial Network (GAN)

* Two models are trained simultaneously by an adversarial process.

* Agenerator ("the artist") learns to create images that look real
* Adiscriminator ("the art critic") learns to tell real images apart from fakes.

“The Artist”
A neural network trying to
create pictures of cats that
look real.

Thousands of real-world
images labeled “CAT”

DISCRIMINATOR
“The Art Critic”
A neural network examining —> DISCRIMINATOR <
cat pictures to determine if
they're real or fake.

1/28/2025 CIS6930 Trustworthy Al Systems

10

The idea of GAN

* During training, the generator progressively becomes better at creating images
that look real, while the discriminator becomes better at telling them apart.

* The process reaches equilibrium when the discriminator can no longer
distinguish real images from fakes.

First Many attempts Even more
attempt later attempts later

ol

DISCRIMINATOR

N \ v

1/28/2025 CIS6930 Trustworthy Al Systems 11

Deep Convolutional GAN (DCGAN)

» Generator: Upsampling layers to produce an image from a seed
(random noise)

1/28/2025

def make_generator_model():

model = tf.keras.Sequential()

model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(188,)))
model.add(layers.BatchNormalization())

model .add(layers.LeakyRelLU())

model .add(layers.Reshape((7, 7, 256)))

assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size

model .add(layers.Conv2DTranspose (128, (5, 5), strides=(1, 1), padding='same’', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)

model .add(layers.BatchNormalization(})

model.add(layers.LeakyRelLU())

model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same’', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)

model.add(layers.BatchNormalization()})

model.add(layers.LeakyRelLU())

model .add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation=
assert model.output_shape == (None, 28, 28, 1)

return model

C1S6930 Trustworthy Al Systems

12

Deep Convolutional GAN (DCGAN)

e Discriminator: a classifier

1/28/2025

def make_discriminator_model():

model = tf.keras.Sequential()

model .add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
input_shape=[28, 28, 1]))

model .add(layers.LeakyRelLlU())

model .add(layers.Dropout(8.3))

model .add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model .add(layers.LeakyRelLlU())
model .add(layers.Dropout(8.3))

model.add(layers.Flatten())
model .add(layers.Dense(1))

return model

C1S6930 Trustworthy Al Systems

13

Deep Convolutional GAN (DCGAN)

* Loss function: optimization goal

* Discriminator loss: how well the discriminator can distinguish real images
from fakes

e Generator loss: how well it was able to trick the discriminator

def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss

def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)

1/28/2025 CIS6930 Trustworthy Al Systems 14

Deep Convolutional GAN (DCGAN)

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use RelLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

The GAN Zoo: https://github.com/hindupuravinash/the-gan-zoo
Tricks to make GAN better: https://github.com/soumith/ganhacks

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

1/28/2025 CIS6930 Trustworthy Al Systems 15

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/soumith/ganhacks

Effect of DCGAN

Start from: Random Noise

1/28/2025

C1S6930 Trustworthy Al Systems

Synthesized Image

16

Conditional GAN (cGAN)

* Learns a mapping from input images to output images

* cCGAN: Condition on input images and generate corresponding
output images

Input Image Ground Truth

Predicted Image
= o .

Image-to-Image Translation with Conditional Adversarial Networks (CVPR 2017)

1/28/2025 CIS6930 Trustworthy Al Systems 17

Applications of cGAN

» Synthesizing photos from label maps

» Generating colorized photos from black and white images
» Turning Google Maps photos into aerial images

» Transforming sketches into photos...

1/28/2025 CIS6930 Trustworthy Al Systems

18

Conditional GAN (cGAN)

 Generator (UNet): an encoder (downsampler) and decoder (upsampler)

LayerT Layer7

Layerb
Layer3 Layer‘ '

' Conv+BatchNormalization+RelLU ﬂ Pooling operation

We can set the size of
layer 7 the same as input

‘ Upsampling Layer — Skip-Connection

https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2022.841297 /full

1/28/2025 CIS6930 Trustworthy Al Systems 19

Training of Generator

Input Image

Generator

def generator_loss(disc_generated_output, gen_output, target): MeﬁnEAbS{’lUte Discriminator
gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output) el

Mean absolute error
11_loss = tf.reduce_mean(tf.abs(target - gen_output)) //f All 1s

Sigmoid Cross
Entropy

total_gen_loss = gan_loss + (LAMBDA * 11_loss)

Lambda
return total_gen_loss, gan_loss, 11_loss

Apply
Gradients

1/28/2025 CIS6930 Trustworthy Al Systems 20

Input Image

Generator

r=—==-=-=-=-=-=== i |

|
Discriminator Discriminator |

Train of Discriminator T

def discriminator_loss(disc_real_output, disc_generated_output):
real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output)

generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output)

total_disc_loss = real_loss + generated_loss All 1s All Os

return total_disc_loss [

Sigmoid Cross Sigmoid Cross
Entropy Entropy

Apply
Gradients

1/28/2025 CIS6930 Trustworthy Al Systems 21

Discriminator in cGAN

 Discriminator: a convolutional PatchGAN classifier—it tries to
classify if each image patch is real or fake.

* The input image and the target image, which it should classify
as real.

« The input image and the generated image (the output of the
generator), which it should classify as fake.

1/28/2025 CIS6930 Trustworthy Al Systems

22

Effect of cGAN (Pixel2Pixel)

- Pass images from the test set to the generator.

» The generator will then translate the input image into the
output.

Ground Truth

1/28/2025 CIS6930 Trustworthy Al Systems

23

https://www.tensorflow.org/tutorials/generative/pix2pix

Take a Break

(Generative
Adversarial

Networks

https://www.youtube.com/watch?v=8L11aMN5KY8

1/28/2025 CIS6930 Trustworthy Al Systems

24

CycleGAN

There are 2 generators (G and F) and 2 discriminators (X
and Y) being trained here.

1/28/2025 CIS6930 Trustworthy Al Systems

25

CycleGAN

* Pixel2Pixel needs paired training data.
* CycleGAN: unpaired training data.

* CycleGAN uses instance normalization instead of batch
normalization.

* The CycleGAN paper uses a modified Resnet based Generator

1/28/2025 CIS6930 Trustworthy Al Systems

26

https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1703.10593

Loss Function in CycleGAN

* There is no pair data to train on, so cycle consistency loss is
designed to enforce the network to learn meaningful mapping.

* Cycle consistency means the result should be close to the original
Input.

D D
;A r G
/"__"'“‘x - ~ 1 ~ ﬁ -
x Y I A 2| | Y~ A X Y
X Y| @ |X Y| A
> : cycle-consistency
. 5 "_".__...--" loss
cycle-consistency |, ,.- i
loss - \.‘-__ _‘,‘.

1/28/2025 CIS6930 Trustworthy Al Systems 27

Neural Style Transfer

A content image and a style reference image (such as an
artwork by a famous painter)

 Blend them together so the output image looks like the content
image, but “painted” in the style of the style reference image.

ContentImage Style Image Synthesized Image

1/28/2025 CIS6930 Trustworthy Al Systems 28

Content and Style Representations

* Use the intermediate
layers of the model to get
the content and style repr
esentations of the image.

* From edges, corners,
textures to high-level
concepts.

https://www.researchgate.net/figure/Visualization-of-example-
features-of-layers-1-10-20-30-40-and-49-of-a-deep_fig1_319622441

1/28/2025 CIS6930 Trustworthy Al Systems

29

Content and Style Representations

* The content of an image is represented by the values of the
intermediate feature maps.

» The style of an image can be described by the means and
correlations across the different feature maps.

1/28/2025 CIS6930 Trustworthy Al Systems

30

Stvle Representation: Gram Matrix

C

. S
4 5

’
»
~d

>
o
e
1]

* 9
%. " A .r"“'!

his image is in the public domain.

Each layer of CNN gives C x H x W tensor of
features; H x W grid of C-dimensional vectors

Efficient to compute; reshape features from
Outer product of two C-dimensional vectors
gives C x C matrix measuring co-occurrence CxHxWto =CxHW

Average over all HW pairs of vectors, giving then compute G = FFT
Gram matrix of shape C x C

Gram matrix: Ignore the positions of features and get correlations among features.

1/28/2025 CIS6930 Trustworthy Al Systems

31

Style Representation: Gram Matrix

The Gram matrix takes the outer product of the feature vector with itself at

each location and averaging that outer product over all locations.

! ZU ijo ‘T)Fj_}d(}
(?mf__ I.J

def gram_matrix(input):

£ T

a, b, ¢, d = input.size() # a=batch size(=1)
b=number of feature maps
{c,d}=54m:J54ﬂJ5 of a £. map (N=c#d)
def gram_matrix(input_tensor):
result = tf.linalg.einsum('bijc,bijd-=bed’, input_tensor, input_tensor) features = input.view(a * b, ¢ *x d) # resize F_XL int

input_shape = tf.shape(input_tensor)
num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32)
return result/(num_locations)

G = torch.mm(features, features.t()) # compu

-

we ‘normalize’ the values of

by dividing by the number of element in each f

Tensorflow Implementation

return G.div(a * b * ¢ * d)

Pytorch Implementation

1/28/2025 CIS6930 Trustworthy Al Systems

+F MmN =
Lne g;n.?- matrix

maps.

32

Neural Style Transfer s

E Gt.
FTANEME S\

1. Pretrain a CNN on ImageNet (VGG-19)

2. Run input texture forward through CNN, Y e— ~
record activations on every layer; layer i Ficonvs_3 = 1] g s Ca
gives feature map of shape C; x H; x W,

3. At each layer compute the Gram matrix e
giving outer product of features: 22 conva_33 2 = 1] *

Gi; = ZFiIkF;k (shape C; x C;) = =l =
5 Fooma otz

4. Initialize generated image from random “pool2™
noise 128 e]

5. Pass generated image through CNN, ' [--com2_ 7 -—————— {J
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 rfl‘_r__com - {J_.
distance between Gram matrices

7. Backprop to get gradient on image

8. Make gradient step on image

9. GOTOS5

1/28/2025 CIS6930 Trustworthy Al Systems

Gradient

- »
e . t
e

descent

33

Learning Objective: MSE loss

def style_content_loss(outputs):
style_outputs = outputs['style']
content_outputs = outputs|['content’]

style_loss = tf.add_n([tf.reduce_mean((style_outputs[name]-style_targets[name])**2)
for name in style_outputs.keys()}])

style_loss *= style_weight / num_style_layers

content_loss = tf.add_n([tf.reduce_mean((content_outputs[name]-content_targets[name])**2)
for name in content_outputs.keys()])

content_loss *= content_weight / num_content_layers

loss = style_loss + content_loss
return loss

@tf.function()
def train_step(image):
with tf.GradientTape() as tape:
outputs = extractor(image)
loss = style_content_loss(outputs)

grad = tape.gradient(loss, image)
opt.apply_gradients([(grad, image)])
image.assign(clip_B8_1(image))

Gradient computation in TensorFlow
1/28/2025

We want to optimize the input and not the model parameters so we
update all the requires_grad fields accordingly
input_img.requires_grad_(True)

We also put the model in evaluation mode, so that specific layers
such as dropout or batch normalization layers behave correctly.
model.evall)

model.requires_grad_(False)

optimizer = get_input_optimizer(input_img)

Gradient computation in PyTorch

CIS6930 Trustworthy Al Systems 34

Neural Style Transfer

More weight to

, More weight to

content loss

1/28/2025 CIS6930 Trustworthy Al Systems

style loss

35

References

https://cs231n.stanford.edu/slides/2024/lecture_11.pdf

https://www.tensorflow.org/tutorials/generative/style transfer

https://pytorch.org/tutorials/advanced/neural_ style_tutorial.html

https://www.tensorflow.org/tutorials/generative/dcgan

https://www.tensorflow.org/tutorials/generative/pix2pix

https://www.tensorflow.org/tutorials/generative/cyclegan

1/28/2025 CIS6930 Trustworthy Al Systems

https://cs231n.stanford.edu/slides/2024/lecture_11.pdf
https://www.tensorflow.org/tutorials/generative/style_transfer
https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/pix2pix
https://www.tensorflow.org/tutorials/generative/cyclegan

	Slide 1: Trustworthy AI Systems -- Generative Modeling (Part I)
	Slide 2: Group Member Checkpoint
	Slide 3: Project Examples from Last Semester
	Slide 4: Last Lecture
	Slide 5: This Lecture
	Slide 6: Generative Modeling
	Slide 7: Learn Data Distributions
	Slide 8: Why Generative Modeling?
	Slide 9: Overview of different types of generative models
	Slide 10: Generative Adversarial Network (GAN)
	Slide 11: The idea of GAN
	Slide 12: Deep Convolutional GAN (DCGAN)
	Slide 13: Deep Convolutional GAN (DCGAN)
	Slide 14: Deep Convolutional GAN (DCGAN)
	Slide 15: Deep Convolutional GAN (DCGAN)
	Slide 16: Effect of DCGAN
	Slide 17: Conditional GAN (cGAN)
	Slide 18: Applications of cGAN
	Slide 19: Conditional GAN (cGAN)
	Slide 20: Training of Generator
	Slide 21: Train of Discriminator
	Slide 22: Discriminator in cGAN
	Slide 23: Effect of cGAN (Pixel2Pixel)
	Slide 24: Take a Break
	Slide 25: CycleGAN
	Slide 26: CycleGAN
	Slide 27: Loss Function in CycleGAN
	Slide 28: Neural Style Transfer
	Slide 29: Content and Style Representations
	Slide 30: Content and Style Representations
	Slide 31: Style Representation: Gram Matrix
	Slide 32: Style Representation: Gram Matrix
	Slide 33: Neural Style Transfer
	Slide 34: Learning Objective: MSE loss
	Slide 35: Neural Style Transfer
	Slide 36: References

